
. ,-

.“

.

A Portable 3D FFT Package for
Distributed-Memory Parallel Architectures”

Hong Q. Dingt Robert D. Ferrarot Donald B. Gcnneryl

A b s t r a c t
A parallel algorithm for 3D FFTs is implemented as a series of local ID FFTs

combined with data transposes. This allows the use of vendor supplied (often fully
optimizecl) secluential ID FFTs. The FFTs are carried out in-place by using an in-
place data transpose across the processors.

1 I n t r o d u c t i o n
Multidimensional FF’I’s are used frequently in engineerillg and scientific calculations, es-
pecially in image processing. Parallel implementations of FFT generally follow two ap-
proaches. One is the binary-exchange approach[l ,2], where data exchanges take place in all
pairs of processors with processor numbers differing by one bit. Another one is the trans-
pose approach[2] for multidimensional FFTs, where a 3D FFT is carried out in 3 successive
lD local sequential FFTs with data transposes occurring in between. hker-processor com-
munication only take place in these data transpose. One advantage oft his approach is that
we can use the vendor-supplied 111 FFTs, which are often fully optimized. Furthermore,
the data transpose part can use any general purpose parallel data transpose algorithm, thus
easing the programming efforts significantly. Our 3D FFT package follows this approach.
In particular, we follow a previous algorithm[3] closely, with the important difference that
we devised an in-place data transpose algorithm, which reduces the computer memory to
just one copy of the entire 3D array and a buffe] for messages.

2 Data Distributions
Two choices of the 3D data distributions are provided. II ‘he first is a slab distribution (1D
domain decomposition) in which a slab (a number of co] nplete x-y planes) of the 3D data
is distributed on each processor. lD FFTs are carried out, for example, along the x and y
dimensions, followed by a global data transpose to a distribution in which each processor
now contains complete x-z planes, so that FFTs along the z dimension can be carried out.
Inverse FFTs follow the reversed order. Other orientations of x,y,z arc also implemented.

In a rod distribution (2D decomposition), the x-y plane is evenly divided into all proces-
sors. All data points along the z dimension are in the same processor, thus forming a rod
extending in z-direction. In this z-local distribution, lD FFTs along z are carried out. A
global data transpose then leads to a y-local distribution, and 113 Fl?Ts along y are carried
out. After a second transpose to a x-local distribution, the ID FFTs along x are carried
out .

“ Work funded by NASA HPCC ESS project.

t Jet prOpUISiOII Laboratory, California Institute of T’cchnology, Pasadena, CA 91109.

1

. .
.’

d
.
.

2 D I N G, FE R R A R O, GENNERY

3 In-place Global 3D Data Transposes
Our implement ation for data transpose for data array(N~, .Vy, N.,”. o) is a f~rly gener~ one,
where N., iVV, N. are not necessarily equal. For example, the sane data transpose can be
used in ADI solutions of PDE’s.

The in-place algorithm first sets up a permutation table and then reshufllcs data locally
to the order expected when the global data transpose completes. In the communication
phase, pairs of processors simply exchange these big data blocks. This completes the data
transpose; the local data reshuffle already causes the data to be in correct order. This
in-place transpose is slightly slower than the common two-copy data transpose[2] due to
the small overhead of setting up the permutation table. H oweve, The memory saved in the
our algorithm can make a crucial difference in many memory-bounded applications.

4 Timing and Scaling
The package has been implemented on the Intel Paragon, the Intel q’ouchstone Delta, and
the Cray T3D, for slab distributions with all three coordinate orientations. Either real or
complex input data in either double or single precision can be specified by the user. (Only
64-bit data is available on the T3D.) The rod distribution so far has been implemented
o n l y f o r s o m e c a s e s .

3D FFT (fvvd. & inv.), complex data, Z slab decomposition
64x64x64 scaled up by number of processors

16 — -

8

~‘‘ ‘;“ 7~

+-- Delta, double
precision (64 bits)

Time in q --ck Delta, single
seconds

—- --—
precision (32 bits)

---+- Paragon, double
precision (64 bits)-—

+– Paragon, single
precision (32 bits)

1
+--- T3D (64 bits)—-— --—

1 2 4 8 16 32 64 128 256 512
Number of processors

The figure includes some of our timing results, to show the scalhlg performance of the
algorithm. It can be seen that it scales very well on the T3D, and fairly well on the Paragon
and Delta. Accurate comparison of the absolute times on the difierent machines perhaps is
not very meaningful, since the ID FFTs may bc coded differently on the different machines.

References
[1]

[2]

[3]

G. C. Fox, et al., solving Problems on Concurrent Processors, VO1.1, Prentice Hall, Englewood
Cliffs, NJ., 1988. pp.187-200.
V. Kumar, A. Grama, A. Gupta and G. Karypis, Introduction to Parallel Computing, Bcn-

jamin/Cunmlings, Redwood City, CA, 1994. pp.377-405.
E. P. Huang, P. C. Liewer, V. K. Decyk and R. D. Ferraro, Concurrent Three-Dimensional Fast
Fourier Transform Algorithms for Coarse -Grained Distributed Memory Parallel Computers,
Caltech Report CRPC-93-1O.

—

